On the Identifiablility of Nonlocal Interaction Kernels in First-Order Systems of Interacting Particles on Riemannian Manifolds

05/21/2023
by   Sui Tang, et al.
0

In this paper, we tackle a critical issue in nonparametric inference for systems of interacting particles on Riemannian manifolds: the identifiability of the interaction functions. Specifically, we define the function spaces on which the interaction kernels can be identified given infinite i.i.d observational derivative data sampled from a distribution. Our methodology involves casting the learning problem as a linear statistical inverse problem using a operator theoretical framework. We prove the well-posedness of inverse problem by establishing the strict positivity of a related integral operator and our analysis allows us to refine the results on specific manifolds such as the sphere and Hyperbolic space. Our findings indicate that a numerically stable procedure exists to recover the interaction kernel from finite (noisy) data, and the estimator will be convergent to the ground truth. This also answers an open question in [MMQZ21] and demonstrate that least square estimators can be statistically optimal in certain scenarios. Finally, our theoretical analysis could be extended to the mean-field case, revealing that the corresponding nonparametric inverse problem is ill-posed in general and necessitates effective regularization techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro