On the central levels problem

12/03/2019
by   Petr Gregor, et al.
0

The central levels problem asserts that the subgraph of the (2m+1)-dimensional hypercube induced by all bitstrings with at least m+1-ℓ many 1s and at most m+ℓ many 1s, i.e., the vertices in the middle 2ℓ levels, has a Hamilton cycle for any m≥ 1 and 1<ℓ< m+1. This problem was raised independently by Savage, by Gregor and Škrekovski, and by Shen and Williams, and it is a common generalization of the well-known middle levels problem, namely the case ℓ=1, and classical binary Gray codes, namely the case ℓ=m+1. In this paper we present a general constructive solution of the central levels problem. Our results also imply the existence of optimal cycles through any sequence of ℓ consecutive levels in the n-dimensional hypercube for any n> 1 and 1<ℓ< n+1. Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle through the n-dimensional hypercube, n≥ 2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing the corresponding Gray code.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro