On Statistical Learning of Simplices: Unmixing Problem Revisited

10/18/2018
by   Amir Najafi, et al.
0

Learning of high-dimensional simplices from uniformly-sampled observations, generally known as the "unmixing problem", is a long-studied task in computer science. More recently, a significant interest is focused on this problem from other areas, such as computational biology and remote sensing. In this paper, we have studied the Probably Approximately Correct (PAC)-learnability of simplices with a focus on sample complexity. Our analysis shows that a sufficient sample size for PAC-learning of K-simplices is only O(K^2 K), yielding a huge improvement over the existing results, i.e. O(K^22). Moreover, a novel continuously-relaxed optimization scheme is proposed which is guaranteed to achieve a PAC-approximation of the simplex, followed by a corresponding scalable algorithm whose performance is extensively tested on synthetic and real-world datasets. Experimental results show that not only being comparable to other existing strategies on noiseless samples, our method is superior to the state-of-the-art in noisy cases. The overall proposed framework is backed with solid theoretical guarantees and provides a rigorous framework for future research in this area.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro