On Near-Linear-Time Algorithms for Dense Subset Sum

10/18/2020
by   Karl Bringmann, et al.
0

In the Subset Sum problem we are given a set of n positive integers X and a target t and are asked whether some subset of X sums to t. Natural parameters for this problem that have been studied in the literature are n and t as well as the maximum input number mx_X and the sum of all input numbers Σ_X. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in n. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time n^O(1). Our main question is: When can dense Subset Sum be solved in near-linear time Õ(n)? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters n,t,mx_X,Σ_X for which dense Subset Sum is in time Õ(n). For notational convenience we assume without loss of generality that t ≥mx_X (as larger numbers can be ignored) and t ≤Σ_X/2 (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP'91], we show that Subset Sum is in near-linear time Õ(n) if t ≫mx_X Σ_X/n^2. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with t ≪mx_X Σ_X/n^2, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro