On Markov chain Monte Carlo for sparse and filamentary distributions

06/23/2018
by   Florian Maire, et al.
0

A novel strategy that combines a given collection of reversible Markov kernels is proposed. It consists in a Markov chain that moves, at each iteration, according to one of the available Markov kernels selected via a state-dependent probability distribution which is thus dubbed locally informed. In contrast to random-scan approaches that assume a constant selection probability distribution, the state-dependent distribution is typically specified so as to privilege moving according to a kernel which is relevant for the local topology of the target distribution. The second contribution is to characterize situations where a locally informed strategy should be preferred to its random-scan counterpart. We find that for a specific class of target distribution, referred to as sparse and filamentary, that exhibits a strong correlation between some variables and/or which concentrates its probability mass on some low dimensional linear subspaces or on thinned curved manifolds, a locally informed strategy converges substantially faster and yields smaller asymptotic variances than an equivalent random-scan algorithm. The research is at this stage essentially speculative: this paper combines a series of observations on this topic, both theoretical and empirical, that could serve as a groundwork for further investigations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro