On-Line Policy Iteration for Infinite Horizon Dynamic Programming

06/01/2021
by   Dimitri Bertsekas, et al.
32

In this paper we propose an on-line policy iteration (PI) algorithm for finite-state infinite horizon discounted dynamic programming, whereby the policy improvement operation is done on-line, only for the states that are encountered during operation of the system. This allows the continuous updating/improvement of the current policy, thus resulting in a form of on-line PI that incorporates the improved controls into the current policy as new states and controls are generated. The algorithm converges in a finite number of stages to a type of locally optimal policy, and suggests the possibility of variants of PI and multiagent PI where the policy improvement is simplified. Moreover, the algorithm can be used with on-line replanning, and is also well-suited for on-line PI algorithms with value and policy approximations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro