On importance-weighted autoencoders

07/24/2019
by   Axel Finke, et al.
0

The importance weighted autoencoder (IWAE) (Burda et al., 2016) is a popular variational-inference method which achieves a tighter evidence bound (and hence a lower bias) than standard variational autoencoders by optimising a multi-sample objective, i.e. an objective that is expressible as an integral over K > 1 Monte Carlo samples. Unfortunately, IWAE crucially relies on the availability of reparametrisations and even if these exist, the multi-sample objective leads to inference-network gradients which break down as K is increased (Rainforth et al., 2018). This breakdown can only be circumvented by removing high-variance score-function terms, either by heuristically ignoring them (which yields the 'sticking-the-landing' IWAE (IWAE-STL) gradient from Roeder et al. (2017)) or through an identity from Tucker et al. (2019) (which yields the 'doubly-reparametrised' IWAE (IWAE-DREG) gradient). In this work, we argue that directly optimising the proposal distribution in importance sampling as in the reweighted wake-sleep (RWS) algorithm from Bornschein Bengio (2015) is preferable to optimising IWAE-type multi-sample objectives. To formalise this argument, we introduce an adaptive-importance sampling framework termed adaptive importance sampling for learning (AISLE) which slightly generalises the RWS algorithm. We then show that AISLE admits IWAE-STL and IWAE-DREG (i.e. the IWAE-gradients which avoid breakdown) as special cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro