On Hamiltonian-Connected and Mycielski graphs

06/06/2022
by   Ashok Kumar Das, et al.
0

A graph G is Hamiltonian-connected if there exists a Hamiltonian path between any two vertices of G. It is known that if G is 2-connected then the graph G^2 is Hamiltonian-connected. In this paper we prove that the square of every self-complementary graph of order grater than 4 is Hamiltonian-connected. If G is a k-critical graph, then we prove that the Mycielski graph μ(G) is (k+1)-critical graph. Jarnicki et al.[7] proved that for every Hamiltonian graph of odd order, the Mycielski graph μ(G) of G is Hamiltonian-connected. They also pose a conjecture that if G is Hamiltonian-connected and not K_2 then μ(G) is Hamiltonian-connected. In this paper we also prove this conjecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro