On Graph Classification Networks, Datasets and Baselines

05/12/2019
by   Enxhell Luzhnica, et al.
0

Graph classification receives a great deal of attention from the non-Euclidean machine learning community. Recent advances in graph coarsening have enabled the training of deeper networks and produced new state-of-the-art results in many benchmark tasks. We examine how these architectures train and find that performance is highly-sensitive to initialisation and depends strongly on jumping-knowledge structures. We then show that, despite the great complexity of these models, competitive performance is achieved by the simplest of models -- structure-blind MLP, single-layer GCN and fixed-weight GCN -- and propose these be included as baselines in future.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro