On complexity of mutlidistance graph recognition in R^1

10/14/2017
by   Mikhail Tikhomirov, et al.
0

Let A be a set of positive numbers. A graph G is called an A-embeddable graph in R^d if the vertices of G can be positioned in R^d so that the distance between endpoints of any edge is an element of A. We consider the computational problem of recognizing A-embeddable graphs in R^1 and classify all finite sets A by complexity of this problem in several natural variations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro