OmniArt: Multi-task Deep Learning for Artistic Data Analysis

08/02/2017
by   Gjorgji Strezoski, et al.
0

Vast amounts of artistic data is scattered on-line from both museums and art applications. Collecting, processing and studying it with respect to all accompanying attributes is an expensive process. With a motivation to speed up and improve the quality of categorical analysis in the artistic domain, in this paper we propose an efficient and accurate method for multi-task learning with a shared representation applied in the artistic domain. We continue to show how different multi-task configurations of our method behave on artistic data and outperform handcrafted feature approaches as well as convolutional neural networks. In addition to the method and analysis, we propose a challenge like nature to the new aggregated data set with almost half a million samples and structured meta-data to encourage further research and societal engagement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro