Notes on Equitable Partition into Matching Forests in Mixed Graphs and into b-branchings in Digraphs

03/24/2020
by   Kenjiro Takazawa, et al.
0

An equitable partition into branchings in a digraph is a partition of the arc set into branchings such that the sizes of any two branchings differ at most by one. For a digraph whose arc set can be partitioned into k branchings, there always exists an equitable partition into k branchings. In this paper, we present two extensions of equitable partitions into branchings in digraphs: those into matching forests in mixed graphs; and into b-branchings in digraphs. For matching forests, Király and Yokoi (2018) considered a tricriteria equitability based on the sizes of the matching forest, and the matching and branching therein. In contrast to this, we introduce a single-criterion equitability based on the number of the covered vertices. For b-branchings, we define an equitability based on the size of the b-branching and the indegrees of all vertices. For both matching forests and b-branchings, we prove that equitable partitions always exist.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro