Not All Neural Embeddings are Born Equal

10/02/2014
by   Felix Hill, et al.
0

Neural language models learn word representations that capture rich linguistic and conceptual information. Here we investigate the embeddings learned by neural machine translation models. We show that translation-based embeddings outperform those learned by cutting-edge monolingual models at single-language tasks requiring knowledge of conceptual similarity and/or syntactic role. The findings suggest that, while monolingual models learn information about how concepts are related, neural-translation models better capture their true ontological status.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro