Nonparametric Preference Completion

05/24/2017
by   Julian Katz-Samuels, et al.
0

We consider the task of collaborative preference completion: given a pool of items, a pool of users and a partially observed item-user rating matrix, the goal is to recover the personalized ranking of each user over all of the items. Our approach is nonparametric: we assume that each item i and each user u have unobserved features x_i and y_u, and that the associated rating is given by g_u(f(x_i,y_u)) where f is Lipschitz and g_u is a monotonic transformation that depends on the user. We propose a k-nearest neighbors-like algorithm and prove that it is consistent. To the best of our knowledge, this is the first consistency result for the collaborative preference completion problem in a nonparametric setting. Finally, we conduct experiments on the Netflix and Movielens datasets that suggest that our algorithm has some advantages over existing neighborhood-based methods and that its performance is comparable to some state-of-the art matrix factorization methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro