Nonlinear integro-differential operator regression with neural networks

10/19/2018
by   Ravi G. Patel, et al.
0

This note introduces a regression technique for finding a class of nonlinear integro-differential operators from data. The method parametrizes the spatial operator with neural networks and Fourier transforms such that it can fit a class of nonlinear operators without needing a library of a priori selected operators. We verify that this method can recover the spatial operators in the fractional heat equation and the Kuramoto-Sivashinsky equation from numerical solutions of the equations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro