Non-Verbal Communication Analysis in Victim-Offender Mediations

11/25/2014
by   Víctor Ponce-López, et al.
0

In this paper we present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. In particular, we propose the use of computer vision and social signal processing technologies in real scenarios of Victim-Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real world Victim-Offender Mediation sessions in Catalonia in collaboration with the regional government. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state-of-the-art binary classification approaches, our system achieves recognition accuracies of 86 when predicting satisfaction, and 79 receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1-5] for the computed social signals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro