Non-Separable Spatio-temporal Models via Transformed Gaussian Markov Random Fields

05/11/2020
by   Douglas R. M. Azevedo, et al.
0

Models that capture the spatial and temporal dynamics are applicable in many science fields. Non-separable spatio-temporal models were introduced in the literature to capture these features. However, these models are generally complicated in construction and interpretation. We introduce a class of non-separable Transformed Gaussian Markov Random Fields (TGMRF) in which the dependence structure is flexible and facilitates simple interpretations concerning spatial, temporal and spatio-temporal parameters. Moreover, TGMRF models have the advantage of allowing specialists to define any desired marginal distribution in model construction without suffering from spatio-temporal confounding. Consequently, the use of spatio-temporal models under the TGMRF framework leads to a new class of general models, such as spatio-temporal Gamma random fields, that can be directly used to model Poisson intensity for space-time data. The proposed model was applied to identify important environmental characteristics that affect variation in the abundance of Nenia tridens, a dominant species of snail in a well-studied tropical ecosystem, and to characterize its spatial and temporal trends, which are particularly critical during the Anthropocene, an epoch of time characterized by human-induced environmental change associated with climate and land use.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro