Non-idempotent types for classical calculi in natural deduction style

02/15/2018
by   Delia Kesner, et al.
0

In the first part of this paper, we define two resource aware typing systems for the λμ-calculus based on non-idempotent intersection and union types. The non-idempotent approach provides very simple combinatorial arguments --based on decreasing measures of type derivations-- to characterize head and strongly normalizing terms. Moreover, typability provides upper bounds for the lengths of the head-reduction and the maximal reduction sequences to normal-form. In the second part of this paper, the λμ-calculus is refined to a resource aware interpretation called λμr, which is inspired by the substitution at a distance paradigm. The small-step λμr-calculus turns out to be compatible with a natural extension of the non-idempotent interpretations of λμ, i.e. λμr-reduction preserves and decreases typing derivations in an extended appropriate typing system. We thus derive a simple arithmetical characterization of strongly λμr-normalizing terms by means of typing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro