Non-Gaussian information from weak lensing data via deep learning

02/04/2018
by   Arushi Gupta, et al.
0

Weak lensing maps contain information beyond two-point statistics on small scales. Much recent work has tried to extract this information through a range of different observables or via nonlinear transformations of the lensing field. Here we train and apply a 2D convolutional neural network to simulated noiseless lensing maps covering 96 different cosmological models over a range of Ω_m,σ_8. Using the area of the confidence contour in the Ω_m,σ_8 plane as a figure-of-merit, derived from simulated convergence maps smoothed on a scale of 1.0 arcmin, we show that the neural network yields ≈ 5 × tighter constraints than the power spectrum, and ≈ 4 × tighter than the lensing peaks. Such gains illustrate the extent to which weak lensing data encode cosmological information not accessible to the power spectrum or even non-Gaussian statistics such as lensing peaks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro