No-Reference Video Quality Assessment using Multi-Level Spatially Pooled Features

12/17/2019
by   Franz Götz-Hahn, et al.
6

Video Quality Assessment (VQA) methods have been designed with a focus on particular degradation types, usually artificially induced on a small set of reference videos. Hence, most traditional VQA methods under-perform in-the-wild. Deep learning approaches have had limited success due to the small size and diversity of existing VQA datasets, either artificial or authentically distorted. We introduce a new in-the-wild VQA dataset that is substantially larger and diverse: FlickrVid-150k. It consists of a coarsely annotated set of 153,841 videos having 5 quality ratings each, and 1600 videos with a minimum of 89 ratings each. Additionally, we propose new efficient VQA approaches (MLSP-VQA) relying on multi-level spatially pooled deep features (MLSP). They are extremely well suited for training at scale, compared to deep transfer learning approaches. Our best method MLSP-VQA-FF improves the Spearman Rank-order Correlation Coefficient (SRCC) performance metric on the standard KonVid-1k in-the-wild benchmark dataset to 0.83 surpassing the best existing deep-learning model (0.8 SRCC) and hand-crafted feature-based method (0.78 SRCC). We further investigate how alternative approaches perform under different levels of label noise, and dataset size, showing that MLSP-VQA-FF is the overall best method. Finally, we show that MLSP-VQA-FF trained on FlickrVid-150k sets the new state-of-the-art for cross-test performance on KonVid-1k and LIVE-Qualcomm with a 0.79 and 0.58 SRCC, respectively, showing excellent generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro