Neural Computation of Capacity Region of Memoryless Multiple Access Channels

05/10/2021
by   Farhad Mirkarimi, et al.
0

This paper provides a numerical framework for computing the achievable rate region of memoryless multiple access channel (MAC) with a continuous alphabet from data. In particular, we use recent results on variational lower bounds on mutual information and KL-divergence to compute the boundaries of the rate region of MAC using a set of functions parameterized by neural networks. Our method relies on a variational lower bound on KL-divergence and an upper bound on KL-divergence based on the f-divergence inequalities. Unlike previous work, which computes an estimate on mutual information, which is neither a lower nor an upper bound, our method estimates a lower bound on mutual information. Our numerical results show that the proposed method provides tighter estimates compared to the MINE-based estimator at large SNRs while being computationally more efficient. Finally, we apply the proposed method to the optical intensity MAC and obtain a new achievable rate boundary tighter than prior works.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro