Neural Architectures for Open-Type Relation Argument Extraction

03/05/2018
by   Benjamin Roth, et al.
0

In this work, we introduce the task of Open-Type Relation Argument Extraction (ORAE): Given a corpus, a query entity Q and a knowledge base relation (e.g.,"Q authored notable work with title X"), the model has to extract an argument of non-standard entity type (entities that cannot be extracted by a standard named entity tagger, e.g. X: the title of a book or a work of art) from the corpus. A distantly supervised dataset based on WikiData relations is obtained and released to address the task. We develop and compare a wide range of neural models for this task yielding large improvements over a strong baseline obtained with a neural question answering system. The impact of different sentence encoding architectures and answer extraction methods is systematically compared. An encoder based on gated recurrent units combined with a conditional random fields tagger gives the best results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro