Network Aware Compute and Memory Allocation in Optically Composable Data Centres with Deep Reinforcement Learning and Graph Neural Networks

10/26/2022
by   Zacharaya Shabka, et al.
0

Resource-disaggregated data centre architectures promise a means of pooling resources remotely within data centres, allowing for both more flexibility and resource efficiency underlying the increasingly important infrastructure-as-a-service business. This can be accomplished by means of using an optically circuit switched backbone in the data centre network (DCN); providing the required bandwidth and latency guarantees to ensure reliable performance when applications are run across non-local resource pools. However, resource allocation in this scenario requires both server-level and network-level resource to be co-allocated to requests. The online nature and underlying combinatorial complexity of this problem, alongside the typical scale of DCN topologies, makes exact solutions impossible and heuristic based solutions sub-optimal or non-intuitive to design. We demonstrate that deep reinforcement learning, where the policy is modelled by a graph neural network can be used to learn effective network-aware and topologically-scalable allocation policies end-to-end. Compared to state-of-the-art heuristics for network-aware resource allocation, the method achieves up to 20% higher acceptance ratio; can achieve the same acceptance ratio as the best performing heuristic with 3× less networking resources available and can maintain all-around performance when directly applied (with no further training) to DCN topologies with 10^2× more servers than the topologies seen during training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro