Mutually-aware Sub-Graphs Differentiable Architecture Search

07/09/2021
by   Haoxian Tan, et al.
0

Differentiable architecture search is prevalent in the field of NAS because of its simplicity and efficiency, where two paradigms, multi-path algorithms and single-path methods, are dominated. Multi-path framework (e.g. DARTS) is intuitive but suffers from memory usage and training collapse. Single-path methods (e.g.GDAS and ProxylessNAS) mitigate the memory issue and shrink the gap between searching and evaluation but sacrifice the performance. In this paper, we propose a conceptually simple yet efficient method to bridge these two paradigms, referred as Mutually-aware Sub-Graphs Differentiable Architecture Search (MSG-DAS). The core of our framework is a differentiable Gumbel-TopK sampler that produces multiple mutually exclusive single-path sub-graphs. To alleviate the severer skip-connect issue brought by multiple sub-graphs setting, we propose a Dropblock-Identity module to stabilize the optimization. To make best use of the available models (super-net and sub-graphs), we introduce a memory-efficient super-net guidance distillation to improve training. The proposed framework strikes a balance between flexible memory usage and searching quality. We demonstrate the effectiveness of our methods on ImageNet and CIFAR10, where the searched models show a comparable performance as the most recent approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro