Mutual Information Decay Curves and Hyper-Parameter Grid Search Design for Recurrent Neural Architectures

12/08/2020
by   Abhijit Mahalunkar, et al.
0

We present an approach to design the grid searches for hyper-parameter optimization for recurrent neural architectures. The basis for this approach is the use of mutual information to analyze long distance dependencies (LDDs) within a dataset. We also report a set of experiments that demonstrate how using this approach, we obtain state-of-the-art results for DilatedRNNs across a range of benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro