Multivariate to Bivariate Reduction for Noncommutative Polynomial Factorization

03/10/2023
by   V. Arvind, et al.
0

Based on a theorem of Bergman we show that multivariate noncommutative polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate noncommutative polynomials. More precisely, we show the following: (1) In the white-box setting, given an n-variate noncommutative polynomial f in F<X> over a field F (either a finite field or the rationals) as an arithmetic circuit (or algebraic branching program), computing a complete factorization of f is deterministic polynomial-time reducible to white-box factorization of a noncommutative bivariate polynomial g in F<x,y>; the reduction transforms f into a circuit for g (resp. ABP for g), and given a complete factorization of g the reduction recovers a complete factorization of f in polynomial time. We also obtain a similar deterministic polynomial-time reduction in the black-box setting. (2) Additionally, we show over the field of rationals that bivariate linear matrix factorization of 4 x 4 matrices is at least as hard as factoring square-free integers. This indicates that reducing noncommutative polynomial factorization to linear matrix factorization (as done in our recent work [AJ22]) is unlikely to succeed over the field of rationals even in the bivariate case. In contrast, multivariate linear matrix factorization for 3 x 3 matrices over rationals is in polynomial time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro