Multiply-and-Fire (MNF): An Event-driven Sparse Neural Network Accelerator

04/20/2022
by   Miao Yu, et al.
0

Machine learning, particularly deep neural network inference, has become a vital workload for many computing systems, from data centers and HPC systems to edge-based computing. As advances in sparsity have helped improve the efficiency of AI acceleration, there is a continued need for improved system efficiency for both high-performance and system-level acceleration. This work takes a unique look at sparsity with an event (or activation-driven) approach to ANN acceleration that aims to minimize useless work, improve utilization, and increase performance and energy efficiency. Our analytical and experimental results show that this event-driven solution presents a new direction to enable highly efficient AI inference for both CNN and MLP workloads. This work demonstrates state-of-the-art energy efficiency and performance centring on activation-based sparsity and a highly-parallel dataflow method that improves the overall functional unit utilization (at 30 fps). This work enhances energy efficiency over a state-of-the-art solution by 1.46×. Taken together, this methodology presents a novel, new direction to achieve high-efficiency, high-performance designs for next-generation AI acceleration platforms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro