Multiple Packing: Lower Bounds via Infinite Constellations

11/08/2022
by   Yihan Zhang, et al.
0

We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N>0 and L∈ℤ_≥2. A multiple packing is a set 𝒞 of points in ℝ^n such that any point in ℝ^n lies in the intersection of at most L-1 balls of radius √(nN) around points in 𝒞. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant L under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro