Multiple Document Datasets Pre-training Improves Text Line Detection With Deep Neural Networks

12/28/2020
by   Mélodie Boillet, et al.
9

In this paper, we introduce a fully convolutional network for the document layout analysis task. While state-of-the-art methods are using models pre-trained on natural scene images, our method Doc-UFCN relies on a U-shaped model trained from scratch for detecting objects from historical documents. We consider the line segmentation task and more generally the layout analysis problem as a pixel-wise classification task then our model outputs a pixel-labeling of the input images. We show that Doc-UFCN outperforms state-of-the-art methods on various datasets and also demonstrate that the pre-trained parts on natural scene images are not required to reach good results. In addition, we show that pre-training on multiple document datasets can improve the performances. We evaluate the models using various metrics to have a fair and complete comparison between the methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro