Multiobjective Multitasking Optimization Based on Decomposition with Dual Neighborhoods

01/19/2021
by   Xianpeng Wang, et al.
0

This paper proposes a multiobjective multitasking optimization evolutionary algorithm based on decomposition with dual neighborhood. In our proposed algorithm, each subproblem not only maintains a neighborhood based on the Euclidean distance among weight vectors within its own task, but also keeps a neighborhood with subproblems of other tasks. Gray relation analysis is used to define neighborhood among subproblems of different tasks. In such a way, relationship among different subproblems can be effectively exploited to guide the search. Experimental results show that our proposed algorithm outperforms four state-of-the-art multiobjective multitasking evolutionary algorithms and a traditional decomposition-based multiobjective evolutionary algorithm on a set of test problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro