Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging

12/06/2022
by   Dongjin Lee, et al.
0

We propose novel methods for Conditional Value-at-Risk (CVaR) estimation for nonlinear systems under high-dimensional dependent random inputs. We propose a DD-GPCE-Kriging surrogate that merges dimensionally decomposed generalized polynomial chaos expansion and Kriging to accurately approximate nonlinear and nonsmooth random outputs. We integrate DD-GPCE-Kriging with (1) Monte Carlo simulation (MCS) and (2) multifidelity importance sampling (MFIS). The MCS-based method samples from DD-GPCE-Kriging, which is efficient and accurate for high-dimensional dependent random inputs. A surrogate model introduces bias, so we propose an MFIS-based method where DD-GPCE-Kriging determines the biasing density efficiently and the high-fidelity model is used to estimate CVaR from biased samples. To speed up the biasing density construction, we compute DD-GPCE-Kriging using a cheap-to-evaluate low-fidelity model. Numerical results for mathematical functions show that the MFIS-based method is more accurate than the MCS-based method when the output is nonsmooth. The scalability of the proposed methods and their applicability to complex engineering problems are demonstrated on a two-dimensional composite laminate with 28 (partly dependent) random inputs and a three-dimensional composite T-joint with 20 (partly dependent) random inputs. In the former, the proposed MFIS-based method achieves 104x speedup compared to standard MCS using the high-fidelity model, while accurately estimating CVaR with 1.15

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro