Multi-view Deep Subspace Clustering Networks

08/06/2019
by   Pengfei Zhu, et al.
1

Multi-view subspace clustering aims to discover the inherent structure by fusing multi-view complementary information. Most existing methods first extract multiple types of hand-crafted features and then learn a joint affinity matrix for clustering. The disadvantage lies in two aspects: 1) Multi-view relations are not embedded into feature learning. 2) The end-to-end learning manner of deep learning is not well used in multi-view clustering. To address the above issues, we propose a novel multi-view deep subspace clustering network (MvDSCN) by learning a multi-view self-representation matrix in an end-to-end manner. MvDSCN consists of two sub-networks, i.e., diversity network (Dnet) and universality network (Unet). A latent space is built upon deep convolutional auto-encoders and a self-representation matrix is learned in the latent space using a fully connected layer. Dnet learns view-specific self-representation matrices while Unet learns a common self-representation matrix for all views. To exploit the complementarity of multi-view representations, Hilbert Schmidt Independence Criterion (HSIC) is introduced as a diversity regularization, which can capture the non-linear and high-order inter-view relations. As different views share the same label space, the self-representation matrices of each view are aligned to the common one by a universality regularization. Experiments on both multi-feature and multi-modality learning validate the superiority of the proposed multi-view subspace clustering model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro