Multi-Task Learning for Mental Health using Social Media Text

12/10/2017
by   Adrian Benton, et al.
1

We introduce initial groundwork for estimating suicide risk and mental health in a deep learning framework. By modeling multiple conditions, the system learns to make predictions about suicide risk and mental health at a low false positive rate. Conditions are modeled as tasks in a multi-task learning (MTL) framework, with gender prediction as an additional auxiliary task. We demonstrate the effectiveness of multi-task learning by comparison to a well-tuned single-task baseline with the same number of parameters. Our best MTL model predicts potential suicide attempt, as well as the presence of atypical mental health, with AUC > 0.8. We also find additional large improvements using multi-task learning on mental health tasks with limited training data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro