Multi-Objective Genetic Programming for Manifold Learning: Balancing Quality and Dimensionality

01/05/2020
by   Andrew Lensen, et al.
0

Manifold learning techniques have become increasingly valuable as data continues to grow in size. By discovering a lower-dimensional representation (embedding) of the structure of a dataset, manifold learning algorithms can substantially reduce the dimensionality of a dataset while preserving as much information as possible. However, state-of-the-art manifold learning algorithms are opaque in how they perform this transformation. Understanding the way in which the embedding relates to the original high-dimensional space is critical in exploratory data analysis. We previously proposed a Genetic Programming method that performed manifold learning by evolving mappings that are transparent and interpretable. This method required the dimensionality of the embedding to be known a priori, which makes it hard to use when little is known about a dataset. In this paper, we substantially extend our previous work, by introducing a multi-objective approach that automatically balances the competing objectives of manifold quality and dimensionality. Our proposed approach is competitive with a range of baseline and state-of-the-art manifold learning methods, while also providing a range (front) of solutions that give different trade-offs between quality and dimensionality. Furthermore, the learned models are shown to often be simple and efficient, utilising only a small number of features in an interpretable manner.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro