Multi-Modal Simultaneous Forecasting of Vehicle Position Sequences using Social Attention

10/08/2019
by   Jean Mercat, et al.
0

Vehicle trajectory forecasting models use a wide variety of frameworks for interaction and multi-modality. They rely on various representations of the road scene and definitions of maneuvers. In this paper we present a simple model that simultaneously forecasts each vehicle position on a road scene as a sequence of multi-modal probability density functions. This relies solely on vehicle position tracks and does not define maneuvers. We produce an easily extendable model that combines these predictive capabilities while surpassing state-of-the-art results. Its architecture uses multi-head attention to account for complete interactions between all vehicles, and long short-term memory (LSTM) layers for encoding and forecasting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro