Multi-gauge Hydrological Variational Data Assimilation: Regionalization Learning with Spatial Gradients using Multilayer Perceptron and Bayesian-Guided Multivariate Regression

07/04/2023
by   Ngo Nghi Truyen Huynh, et al.
0

Tackling the difficult problem of estimating spatially distributed hydrological parameters, especially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization technique for learning complex regional transfer functions designed for high-resolution hydrological models. The transfer functions rely on: (i) a multilayer perceptron enabling a seamless flow of gradient computation to employ machine learning optimization algorithms, or (ii) a multivariate regression mapping optimized by variational data assimilation algorithms and guided by Bayesian estimation, addressing the equifinality issue of feasible solutions. The approach involves incorporating the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro