MPT: Mesh Pre-Training with Transformers for Human Pose and Mesh Reconstruction

11/24/2022
by   Kevin Lin, et al.
0

We present Mesh Pre-Training (MPT), a new pre-training framework that leverages 3D mesh data such as MoCap data for human pose and mesh reconstruction from a single image. Existing work in 3D pose and mesh reconstruction typically requires image-mesh pairs as the training data, but the acquisition of 2D-to-3D annotations is difficult. In this paper, we explore how to leverage 3D mesh data such as MoCap data, that does not have RGB images, for pre-training. The key idea is that even though 3D mesh data cannot be used for end-to-end training due to a lack of the corresponding RGB images, it can be used to pre-train the mesh regression transformer subnetwork. We observe that such pre-training not only improves the accuracy of mesh reconstruction from a single image, but also enables zero-shot capability. We conduct mesh pre-training using 2 million meshes. Experimental results show that MPT advances the state-of-the-art results on Human3.6M and 3DPW datasets. We also show that MPT enables transformer models to have zero-shot capability of human mesh reconstruction from real images. In addition, we demonstrate the generalizability of MPT to 3D hand reconstruction, achieving state-of-the-art results on FreiHAND dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro