Moving towards practical user-friendly synthesis: Scalable synthetic data methods for large confidential administrative databases using saturated count models

07/16/2021
by   James Jackson, et al.
0

Over the past three decades, synthetic data methods for statistical disclosure control have continually developed; methods have adapted to account for different data types, but mainly within the domain of survey data sets. Certain characteristics of administrative databases - sometimes just the sheer volume of records of which they are comprised - present challenges from a synthesis perspective and thus require special attention. This paper, through the fitting of saturated models, presents a way in which administrative databases can not only be synthesized quickly, but also allows risk and utility to be formalised in a manner inherently unfeasible in other techniques. The paper explores how the flexibility afforded by two-parameter count models (the negative binomial and Poisson-inverse Gaussian) can be utilised to protect respondents' - especially uniques' - privacy in synthetic data. Finally an empirical example is carried out through the synthesis of a database which can be viewed as a good representative to the English School Census.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro