ModeNet: Mode Selection Network For Learned Video Coding

07/06/2020
by   Théo Ladune, et al.
0

In this paper, a mode selection network (ModeNet) is proposed to enhance deep learning-based video compression. Inspired by traditional video coding, ModeNet purpose is to enable competition among several coding modes. The proposed ModeNet learns and conveys a pixel-wise partitioning of the frame, used to assign each pixel to the most suited coding mode. ModeNet is trained alongside the different coding modes to minimize a rate-distortion cost. It is a flexible component which can be generalized to other systems to allow competition between different coding tools. Mod-eNet interest is studied on a P-frame coding task, where it is used to design a method for coding a frame given its prediction. ModeNet-based systems achieve compelling performance when evaluated under the Challenge on Learned Image Compression 2020 (CLIC20) P-frame coding track conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro