ModelChain: Decentralized Privacy-Preserving Healthcare Predictive Modeling Framework on Private Blockchain Networks

02/06/2018
by   Tsung-Ting Kuo, et al.
0

Cross-institutional healthcare predictive modeling can accelerate research and facilitate quality improvement initiatives, and thus is important for national healthcare delivery priorities. For example, a model that predicts risk of re-admission for a particular set of patients will be more generalizable if developed with data from multiple institutions. While privacy-protecting methods to build predictive models exist, most are based on a centralized architecture, which presents security and robustness vulnerabilities such as single-point-of-failure (and single-point-of-breach) and accidental or malicious modification of records. In this article, we describe a new framework, ModelChain, to adapt Blockchain technology for privacy-preserving machine learning. Each participating site contributes to model parameter estimation without revealing any patient health information (i.e., only model data, no observation-level data, are exchanged across institutions). We integrate privacy-preserving online machine learning with a private Blockchain network, apply transaction metadata to disseminate partial models, and design a new proof-of-information algorithm to determine the order of the online learning process. We also discuss the benefits and potential issues of applying Blockchain technology to solve the privacy-preserving healthcare predictive modeling task and to increase interoperability between institutions, to support the Nationwide Interoperability Roadmap and national healthcare delivery priorities such as Patient-Centered Outcomes Research (PCOR).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro