Modal Logics with Composition on Finite Forests: Expressivity and Complexity (Extra Material)

07/16/2020
by   Bartosz Bednarczyk, et al.
0

We investigate the expressivity and computational complexity of two modal logics on finite forests equipped with operators to reason on submodels. The logic ML(|) extends the basic modal logic ML with the composition operator | from static ambient logic, whereas ML(*) contains the separating conjunction * from separation logic. Though both operators are second-order in nature, we show that ML(|) is as expressive as the graded modal logic GML (on finite trees) whereas ML(*) lies strictly between ML and GML. Moreover, we establish that the satisfiability problem for ML(*) is Tower-complete, whereas for ML(|) is (only) AExpPol-complete. As a by-product, we solve several open problems related to sister logics, such as static ambient logic, modal separation logic, and second-order modal logic on finite trees.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro