Missing at random: a stochastic process perspective

01/20/2018
by   Daniel Farewell, et al.
0

We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing data framework, we give a novel characterisation of the observed data as a stopping-set sigma algebra. We demonstrate that the usual missingness at random conditions are equivalent to requiring particular stochastic processes to be adapted to a set-indexed filtration of the complete data: measurability conditions that suffice to ensure the likelihood factorisation necessary for ignorability. Our rigorous statement of the missing at random conditions also clarifies a common confusion: what is fixed, and what is random?

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro