Mining Message Flows using Recurrent Neural Networks for System-on-Chip Designs

04/29/2020
by   Yuting Cao, et al.
0

Comprehensive specifications are essential for various activities across the entire validation continuum for system-on-chip (SoC) designs. However, specifications are often ambiguous, incomplete, or even contain inconsistencies or errors. This paper addresses this problem by developing a specification mining approach that automatically extracts sequential patterns from SoC transaction-level traces such that the mined patterns collectively characterize system-level specifications for SoC designs. This approach exploits long short-term memory (LSTM) networks trained with the collected SoC execution traces to capture sequential dependencies among various communication events. Then, a novel algorithm is developed to efficiently extract sequential patterns on system-level communications from the trained LSTM models. Several trace processing techniques are also proposed to enhance the mining performance. We evaluate the proposed approach on simulation traces of a non-trivial multi-core SoC prototype. Initial results show that the proposed approach is capable of extracting various patterns on system-level specifications from the highly concurrent SoC execution traces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro