Minimax D-optimal designs for multivariate regression models with multi-factors

10/02/2019
by   Lucy L. Gao, et al.
0

In multi-response regression models, the error covariance matrix is never known in practice. Thus, there is a need for optimal designs which are robust against possible misspecification of the error covariance matrix. In this paper, we approximate the error covariance matrix with a neighbourhood of covariance matrices, in order to define minimax D-optimal designs which are robust against small departures from an assumed error covariance matrix. It is well known that the optimization problems associated with robust designs are non-convex, which makes it challenging to construct robust designs analytically or numerically, even for one-response regression models. We show that the objective function for the minimax D-optimal design is a difference of two convex functions. This leads us to develop a flexible algorithm for computing minimax D-optimal designs, which can be applied to any multi-response model with a discrete design space. We also derive several theoretical results for minimax D-optimal designs, including scale invariance and reflection symmetry.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro