Meyniel's conjecture on graphs of bounded degree

The game of Cops and Robbers is a well known pursuit-evasion game played on graphs. It has been proved <cit.> that cubic graphs can have arbitrarily large cop number c(G), but the known constructions show only that the set {c(G) | G cubic} is unbounded. In this paper we prove that there are arbitrarily large subcubic graphs G whose cop number is at least n^1/2-o(1) where n=|V(G)|. We also show that proving Meyniel's conjecture for graphs of bounded degree implies a weak Meyniel's conjecture for all graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro