Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation

02/14/2012
by   Akshat Kumar, et al.
0

Computing maximum a posteriori (MAP) estimation in graphical models is an important inference problem with many applications. We present message-passing algorithms for quadratic programming (QP) formulations of MAP estimation for pairwise Markov random fields. In particular, we use the concave-convex procedure (CCCP) to obtain a locally optimal algorithm for the non-convex QP formulation. A similar technique is used to derive a globally convergent algorithm for the convex QP relaxation of MAP. We also show that a recently developed expectation-maximization (EM) algorithm for the QP formulation of MAP can be derived from the CCCP perspective. Experiments on synthetic and real-world problems confirm that our new approach is competitive with max-product and its variations. Compared with CPLEX, we achieve more than an order-of-magnitude speedup in solving optimally the convex QP relaxation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro