Memory-Efficient Sampling for Minimax Distance Measures

05/26/2020
by   Fazeleh Sadat Hoseini, et al.
0

Minimax distance measure extracts the underlying patterns and manifolds in an unsupervised manner. The existing methods require a quadratic memory with respect to the number of objects. In this paper, we investigate efficient sampling schemes in order to reduce the memory requirement and provide a linear space complexity. In particular, we propose a novel sampling technique that adapts well with Minimax distances. We evaluate the methods on real-world datasets from different domains and analyze the results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro