Median Binary-Connect Method and a Binary Convolutional Neural Nework for Word Recognition

11/07/2018
by   Spencer Sheen, et al.
0

We propose and study a new projection formula for training binary weight convolutional neural networks. The projection formula measures the error in approximating a full precision (32 bit) vector by a 1-bit vector in the l_1 norm instead of the standard l_2 norm. The l_1 projector is in closed analytical form and involves a median computation instead of an arithmatic average in the l_2 projector. Experiments on 10 keywords classification show that the l_1 (median) BinaryConnect (BC) method outperforms the regular BC, regardless of cold or warm start. The binary network trained by median BC and a recent blending technique reaches test accuracy 92.4 the full-precision network accuracy 93.5 binary network doubles the speed of full-precision network in spoken keywords recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro