Mean-field limit of interacting 2D nonlinear stochastic spiking neurons

06/24/2019
by   Benjamin Aymard, et al.
0

In this work, we propose a nonlinear stochastic model of a network of stochastic spiking neurons. We heuristically derive the mean-field limit of this system. We then design a Monte Carlo method for the simulation of the microscopic system, and a finite volume method (based on an upwind implicit scheme) for the mean-field model. The finite volume method respects numerical versions of the two main properties of the mean-field model, conservation and positivity, leading to existence and uniqueness of a numerical solution. As the size of the network tends to infinity, we numerically observe propagation of chaos and convergence from an individual description to a mean-field description. Numerical evidences for the existence of a Hopf bifurcation (synonym of synchronised activity) for a sufficiently high value of connectivity, are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro