Marginal modeling of cluster-period means and intraclass correlations in stepped wedge designs with binary outcomes

01/02/2021
by   Fan Li, et al.
0

Stepped wedge cluster randomized trials (SW-CRTs) with binary outcomes are increasingly used in prevention and implementation studies. Marginal models represent a flexible tool for analyzing SW-CRTs with population-averaged interpretations, but the joint estimation of the mean and intraclass correlation coefficients (ICCs) can be computationally intensive due to large cluster-period sizes. Motivated by the need for marginal inference in SW-CRTs, we propose a simple and efficient estimating equations approach to analyze cluster-period means. We show that the quasi-score for the marginal mean defined from individual-level observations can be reformulated as the quasi-score for the same marginal mean defined from the cluster-period means. An additional mapping of the individual-level ICCs into correlations for the cluster-period means further provides a rigorous justification for the cluster-period approach. The proposed approach addresses a long-recognized computational burden associated with estimating equations defined based on individual-level observations, and enables fast point and interval estimation of the intervention effect and correlations. We further propose matrix-adjusted estimating equations to improve the finite-sample inference for ICCs. By providing a valid approach to estimate ICCs within the class of generalized linear models for correlated binary outcomes, this article operationalizes key recommendations from the CONSORT extension to SW-CRTs, including the reporting of ICCs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro